If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41v^2-33v=0
a = 41; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·41·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*41}=\frac{0}{82} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*41}=\frac{66}{82} =33/41 $
| 34-a=2a+6 | | 5-(6r+5)+r=5(1-r) | | x/12+10=11 | | -59=5x+3 | | 3x(x+8)+x=90 | | 2.1+42=5.2x-20 | | 66=2x+16 | | 3x+8=9x-16+x | | 120=4x+2 | | z-4=29 | | z-4=24 | | 6a–15=72 | | 3(4x+3)=2 | | 12x-60=4x+4 | | 5x^2+7x-10=8-2x | | 3x=0,5x | | 33=3u-15 | | 10k-14k+3-19=8(2+k)-4k | | 3v+9=-9 | | 3y2-8=13 | | 29=-7-2x | | 114-99=38y-41y | | 4x-20=x+1 | | 8(n+2-3(n-4)=6(n-7)+8 | | 29=17/32x-23 | | -4+4u=24 | | 1/3y-8=1/8y | | -4=4u=24 | | 8-2b=3b-7 | | -v+231=22 | | x^2-0.6x=5 | | 2w+11=27 |